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Abstract X-ray testing for baggage inspection has been

increasingly used at airports, reducing the risk of ter-

rorist crimes and attacks. Nevertheless, this task is still

being carried out by human inspectors and with lim-

ited technological support. The technology that is be-

ing used is not always effective, as it depends mainly on

the position of the object of interest, occlusion, and the

accumulated experience of the inspector. Due to this

problem, we have developed an approach that inspects

X-ray images using active vision in order to automati-

cally detect objects that represent a threat. Our method

includes three steps: detection of potential threat ob-

jects in single views based on the similarity of features

and spatial distribution; estimation of the best-next-

view using Q-learning; and elimination of false alarms

based on multiple view constraints. We tested our al-
gorithm on X-ray images that included handguns and

razor blades. In the detection of handguns we registered

good results for recall and precision (Re = 67%, Pr =

83%) along with a high performance in the detection

of razor blades (Re = 82%, Pr = 100%) taking into

consideration 360 inspections in each case. Our results

indicate that non-destructive inspection actively using

X-ray images, leads to more effective object detection

in complex environments, and helps to offset certain

levels of occlusion and the internal disorder of baggage.

Keywords X-ray testing · threat objects detection ·
active vision · X-ray images · computer vision

B Vladimir Riffo: vladimir.riffo@uda.cl
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1 Introduction

Over the last few years, aviation security screening us-

ing X-ray scanners has become a very important issue

in airports and safety checkpoints. The inspection pro-

cess, however, is complex as dangerous items are very

difficult to detect when placed in closely packed bags,

are superimposed by other objects and/or are rotated

showing an indistinguishable profile. In baggage screen-

ing, where human security plays an important role and

inspection complexity is very high, human inspectors

are still employed. However, human inspection of threat

objects is:

i) Demanding and stressful: during peak hours at air-

ports, inspectors only have a few seconds to decide

if a piece of luggage contains or not an element that

could be a threat.

ii) Boring and tedious: very few pieces of baggage ac-

tually contain threatening articles. The job requires

a lot of focus to identify a wide variety of objects

and their categories, forms and substances (metallic,

organic and inorganic substances).

iii) Difficult: Human inspectors have to undergo a train-

ing program and receive minimal technological sup-

port.

iv) Uncertain: Because each operator must examine ma-

ny and varied bags, packages and luggage, the prob-

ability of human error rises considerably over an ex-

tended period of time. Reported detection perfor-

mance is only in the range of 80–90%.

Alternatively, automated X-ray object recognition

can offer the advantages of objectivity and reproducibil-

ity for every test. For this reason, certain digital imag-

ing and computer vision techniques have been devel-

oped. However, even though various scientific teams are
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exploring numerous research directions, adopting very

different principles, and developing a wide range of al-

gorithms for very different applications, automated X-

ray object recognition remains an open question due

to the large variability of the appearance and shape of

test objects, both between and within categories (e.g.,

within the category guns and knives it is possible to

identify many different objects). Furthermore, there ex-

ists a broad variability within an object sample depend-

ing on its points of view (e.g., the overhead view and

frontal view of a gun are very different). In addition,

the appearance of a test object can differ due to self-

occlusion, noise and conditions of acquisition. Further-

more, certain threat objects are not easily recognizable

after only one view (due to their position as shown in

Fig. 1a.

(a) (b)

Fig. 1: Two views of an object inspected with X-rays, (a)
handgun in a bad pose, and (b) handgun in a good pose.

In this research project, we propose a method for

automated inspection employing multiple views of X-

ray images using a strategy called active vision. The

key idea of the method is to identify a “good view” to

ensure detection as shown in Fig. 1b.

Active vision for X-ray baggage inspection was orig-

inally proposed in our preliminary work with promising

results in the detection of razor blades placed inside dif-

ferent container objects [25]. The approach attempted

to locate a good view of the inspection object, i.e., an

image in which a target object should be viewed from

a good pose that ensures its detection. The good poses

of the target object correspond to those in which the

acquired view should have a high probability of detec-

tion as shown in Fig. 1. Thus, the strategy attempts to

rotate and/or translate the inspection object from an

initial to a new position in which the detection prob-

ability of the target object should be higher. In this

new research work, we have significantly improved the

original active vision approach by:

i) Increasing the robustness of single-view detection:

We have employed an Adapted Implicit Shape Model

in our work (AISM) [26], which is an adaption of the

Implicit Shape Model (ISM) [10]. AISM has been

shown to obtain a good performance in baggage in-

spection as it considers objects as a set of indepen-

dent parts, but that are connected logically through

a star structure that allows us to detect different

categories of objects;

ii) Improving the prediction of the next view: In or-

der to predict the next view of the active vision

approach, we now use a reinforcement learning al-

gorithm (Q-Learning);

iii) Including an additional validation step: We have

eliminated false alarms by using an algorithm of ge-

ometric correspondences between images, as a hy-

pothetical detection in a single view would be con-

sidered real if a correspondence exists in another

image.

Finally, in our research work the evaluation of the ap-

proach has been undertaken in more realistic environ-

ments, e.g., bags with a high degree of clutter using

GDXray database [17]. During this process, active in-

spection has been performed using X-ray images ac-

quired under basic conditions: shades of gray (no pseu-

docolor), with a single viewpoint, acquired images with

only one energy level and with no algorithm for image

processing.

We have implemented and applied a method for the

automatic and active detection of threat objects placed

inside luggage bags, handbags, etc., considering the fol-

lowing as such objects: razor blades and handguns. We

have highlighted the robustness of this approach in the

active detection of a symmetrical and regular object

(razor blades), and acceptable results for objects of ir-
regular form (handguns). These are promising results

and establish a generic approach for X-ray image detec-

tion of objects, which could be a useful tool to help hu-

man inspectors in airports or customs inspection points.

We also believe that –with an ad-hoc training dataset–,

our method could be useful in detecting other kinds of

objects in X-ray images.

2 State of the art

In general, X-ray inspection can be carried out by hu-

man inspectors or by automatic systems. Although hu-

man inspectors can do the task better than machines,

they are slower and tire quickly. Additionally, human

inspectors are not always consistent and effective when

evaluating objects, as inspection tasks are monotonous

and tedious, even for experts. Moreover, human experts

are difficult to find or keep within the industry; they re-

quire training and their learning process can take time.
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According to the literature, human inspection of indus-

trial processes has an efficiency level of maximum 80%

[24], and in other publications associated with X-ray

inspections in airports, the efficiency level does not rise

above 90% [9,28,32].

After the 9/11 terrorist attacks on the United States,

airports and customs halls have intensified restrictions

and stepped up security. In addition, safety checkpoints

using X-rays have been placed at international or re-

gional borders to avoid the introduction of diseases and

pests that can harm local agriculture (i.e., to detect

plant and animal products). Thus, inspection through

X-ray screening has become a process of high impor-

tance. Nonetheless, inspection of handbags, suitcases

and other luggage in general is a complex task, as many

objects deemed a threat are difficult to detect, espe-

cially when packages are placed too close to each other,

leading to the occlusion or distortion by other objects,

and creating an unrecognizable viewpoint [4,21,27,35].

In the course of this work, it has been particularly

interesting to review the advances in baggage screen-

ing that have taken place over the course of the current

decade1. These can be summarized as follows: some ap-

proaches attempt to recognize objects using a single

view of mono-energy X-ray images (e.g., the adapted

implicit shape model based on visual codebooks [26],

adaptive sparse representations [19] and deep learn-

ing [20]) and dual-energy X-ray images (e.g., Gabor

texture features [30], bag of words based [2,29], pseu-

docolor, texture, edge and shape features [36,33] and

deep learning [1]). Furthermore, complex approaches

that deal with multiple X-ray images have also been

developed. For the recognition of regular objects from

mono-energy images, methods such as data association

[15,18] and active vision [25], where a second-best view

is estimated, have been explored. In the case of dual-

energy imaging, visual vocabularies and SVM classifiers

have been used, as shown in [8]. Progress has also been

made in the area of computed tomography. For exam-

ple, in order to improve the quality of CT images, metal

artifact reduction and de-noising [23] techniques have

been suggested. Many methods based on 3D features for

3D object recognition have been developed (see, for ex-

ample, RIFT and SIFT descriptors [6], 3D Visual Cor-

tex Modeling, 3D Zernike descriptors and histograms

of the shape index [12]). Contributions have also been

made using known recognition techniques (see, for ex-

ample, bag of words [7] and random forest [22]).

But as we know, existing technology is far from per-

fect. Today there is no completely automatic method,

1 Other contributions have been made towards computer
vision for X-ray testing in applications such as the inspection
of castings, welds, food and cargos [14].

and manual systems remain vulnerable to human error.

The state of the art shows that in this area of research

there have been different approaches, depending on the

application. Nevertheless, X-ray automatic inspection

still has problems that need to be addressed: i) loss

of generality ; this is because approaches developed for

one application cannot be used on others, ii) poor accu-

racy in the detection; as the false positive (false alarms)

and non detection are compromised, iii) limited robust-

ness; due to the fact that pre-requisites for the use of a

method are frequently obtained only with simple struc-

tures, and iv) low adaptability ; as it can be very hard to

modify the design of an automatic system. We have ob-

served that when inspectors make a baggage radioscopic

inspection at airports, they have only one X-ray im-

age (incorporating shades of gray and/or pseudocolor)

to take a decision of high importance, i.e., to identify

a number of threat objects (metal, organic and inor-

ganic) that could place the lives of people that travel

by plane at risk. The literature reports that for these

purposes, one image is insufficient [3], given that objects

of concern (threat objects), can be totally or partially

occluded and/or positioned in such a way that does not

allow for their recognition as illustrated in Fig. 1. Mul-

tiple views and active vision can be an effective option

for examining complex objects where uncertainty can

lead to misinterpretation.

3 Proposed method

The general approach allows us to find an image in

which a target object can be observed from a ‘good

pose’ that assures its detection. For example, the ‘good

poses’ for a handgun correspond to the frontal views

(the largest visible surface) as illustrated in Fig. 1b. In

contrast, in the case of a ‘bad pose’ the object is difficult

to identify as shown in Fig. 1a. Our approach follows

Fig. 2: the key idea is to rotate the object being exam-

ined –in case it is positioned in a ‘bad pose’– from an

initial position to a new one, a ‘good pose’, in which the

probability of detection of a threat object is increased.

Given the acquisition of a primary image, the following

three situations may occur:

Detection from a ‘good pose’ : If the initial pose cor-

responds to a good viewpoint and the target object is

detected, it will not be necessary to move (rotate) the

object to a new position (given by L in Fig. 2), i.e.,

in this case, the inspection is performed with only

one X-ray image, avoiding the need to analyze more

images.

Detection from a ‘bad pose’ : If a potential target ob-

ject is detected in a ‘bad pose’, an algorithm will es-
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timate the position L to which the gripping and rota-

tion systems have to move, in order to obtain a ‘good

pose’ in the next detection, i.e., the next-best-view.

This process is interrupted after Cmax = 4 times, in

order to avoid infinity loops.

No object detection: If no target object is identified

during the detection stage, then the testing object is

arbitrarily rotated to a new position L, that is differ-

ent from the first, and repeating the detection stage.

The previous situation may be repeated Dmax = 3

times, so as to guarantee the inspection of all rele-

vant viewpoints.

Fig. 2: Proposed method.

The proposed approach analyzes X-ray images to de-

tect a target object in a good pose. Our active vision

method includes: detection in single views (Section 3.1);

pose estimation (Section 3.2); next-best-view estima-

tion (Section 3.3); and elimination of false alarms (Sec-

tion 3.4). In the following Sections, these methods will

be explained in further details.

3.1 Single-view detection

In Fig. 2 we can observe the “detector” box, which at-

tempts to detect threat objects from a single view. We

use the Adapted Implicit Shape Model (AISM) [26] for

object recognition in baggage screening. The two main

stages of AISM are:

Learning : The training stage is based on the creation

of a visual vocabulary using keypoints and local vi-

sual descriptors. In this stage, a target object is repre-

sented using a visual vocabulary of parts (category-

specific appearance codebook). Keypoints and their

local visual descriptors are extracted automatically

from all training images of the target object using the

recognized SIFT approach [11]. Thus, an object cat-

egory is characterized by estimating a visual vocabu-

lary of the object parts together with a measurement

of their spatial distribution.
Testing : During the testing stage, target objects are

detected by searching similar visual words and similar

spatial distributions.

More details can be found in [26].

3.2 Pose estimation

For pose estimation, we use the original algorithm that

we proposed in [25]. For the sake of completeness, a

summary is presented in this Section.

During an off-line stage, an X-ray image is taken

from every relevant pose of the target object as illus-

trated in Fig. 3. For each pose k, SIFT descriptors fk
are computed [11]. During the testing stage, a set of

SIFT descriptors f̂ of the detected target object is ex-

tracted (see Section 3.1). Thus, the estimated pose of

the detected target object is obtained by:

k∗ = argmin
k

(
d(fk, f̂)

)
. (1)

where d is a metrics that measures the difference be-

tween the set of SIFT descriptors of pose k and SIFT

descriptors of the detected target object. If the distance

d(fk∗ , f̂) is not high enough then no pose is estimated.

In case of non-detection, the pose estimation algorithm

provides a default pose, with a value equal to zero (as

shown in the Fig. 3).

In case the target object is detected in a good pose

(see Fig. 2), our algorithm decides that no additional
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Fig. 3: Process of assigning poses to states, from a sector of the razor blade training database (β = 0◦).

view is required for the inspection. However, if a target

object is not detected in a good pose (and we have

analyzed less than Cmax X-ray images), then we take

another X-ray image using the following algorithm that

estimates the next-best-view.

3.3 Next-best-view estimation

As explained in the previous section, this step is per-

formed only in case an additional view of the test object

is required. Thus, the key idea of the active vision strat-

egy is to move the manipulator from its actual position

to a new one in which the new pose of the target object

allows for its recognition. This new pose should corre-

spond to one of the good poses. These are defined off-

line as the poses in which the recognition of the target

objects is most likely to occur (Fig. 3). Consequently,

an attempt is made to estimate the next-best-view. The

manipulator can be moved to this position in only one

step. In some cases, however, a good pose is achieved

after more than one step.

The estimation of the next-best-view is based on the

reinforcement learning algorithm ‘Q-learning’. This was

originally proposed in [34] to solve Markov Decision

Processes (MDP) using incomplete information. In Q-

learning, an agent learns the optimal policy of its his-

tory of interactions with the environment, which is a se-

quence of experiences represented by a tuple 〈s, a, r, s’〉.
In this definition, the agent was in state s, performed

action a, received reward r, and is now in state s’. In

our approach, the idea is to learn an optimal action-

selection to find the next-best-view by estimatingQ(s, a)

defined as the quantity of a state-action combination.

This corresponds to the future value r + η V (s’) that

the agent received, where V (s’) = max
a’

Q(s’, a’) is the

real current reward plus the future value estimated with

a discount. Parameter η is a number between 0 and 1

(0 ≤ η ≤ 1) called the discount factor and defined as

a tradeoff between exploration and exploitation of the

learning process. The agent can upgrade their estima-

tion of Q(s, a) as:

Q(s, a)← (1−α)Q(s, a) +α

(
r+ ηmax

a’
Q(s’, a’)

)
. (2)

where, α is the learning rate (0 ≤ α ≤ 1). This pre-

sumes that α is fixed; if α is variable, there will be a

different count for each state-action. The Q-Learning

equation (2) for discreet states, is reduced to equation

(3), due to the learning rate α = 1. Furthermore, in

order to make the search for future rewards easier, we

set the discount factor (η) to 0.8. Thus, we privileged

exploration over the exploitation of the information al-

ready known:

Q(s, a)← R+ ηmax
a’

Q(s’, a’). (3)

In the off-line training stage, we used a database

of X-ray razor blade and handgun images in different

poses. In Fig. 3 the X-ray images for a razor blade are

illustrated. Starting from these images we determined

different states for Q-Learning training. Due to the dif-

ferent rotations α, β and γ, for X,Y, Z axes respec-

tively, the quadrants have replicas: because of this, we

only used images from the main quadrant during the
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training process, meaning the images between the an-

gles α: [120◦, 150◦, 180◦, 210◦, 240◦] and γ: [120◦, 150◦,

180◦, 210◦, 240◦], for the four angles β: [0◦, 30◦, 60◦,

90◦]. Thus we defined a priori which views should be

considered “Good Poses” (GP) and which ones the al-

gorithm should locate (see Fig. 3 for the different poses

and states associated with the razor blade).

Fig. 4: States diagram for Q-learning.

Starting from the 25 poses associated with each im-

age, including Non-Detection (ND), as shown in the

Fig. 3, we proceeded to model the environment non-

continuous; we grouped together the different images

with their respective poses, considering the angle γ and

we then assigned a name, starting from D (Detected,

D1 and D2), GP (Good Pose), DE (Exceptional Detec-

tion, DE1 and DE2) and ND when a good pose is not

detected. We were able to simplify this representation

using a state diagram (see Fig. 4), where we represented

each group of images as a node and each rotation γ as

a connector. In summary, Q-learning training has three

main stages:

Definition of poses and states: Starting from the X-

ray images database (see Fig. 3), i.e., the images be-

tween the angles α: [120◦, 150◦, 180◦, 210◦, 240◦] and

γ: [120◦, 150◦, 180◦, 210◦, 240◦], for the four angles

β: [0◦, 30◦, 60◦, 90◦], and using a priori knowledge,

we defined good and bad poses for the target object

and generated a states diagram, as shown in Fig. 4.

Definition of R Matrix : R matrix is the data array

in which the rewards and punishments (r) are stored.

The agent receives this matrix from the environment.

Rewards indicate to the agent that the procedure is

correct, while the punishments indicate that the pro-

cedure is incorrect. Rewards are defined as the nu-

meric value that the agent receives after the transi-

tion from one state to another (s→ s’). The maximal

reward value is +100. This is assigned to an R matrix

after a transition to GP. Conversely, a minimal value

(zero) as punishment, is assigned to an R matrix if

the transition takes place to a pose that is not GP.

Definition of Q Matrix : Q Matrix is the data array

in which the corresponding values of the action-state

pair are stored. In this way, we can search for the op-

timal route following the highest scores, for the dif-

ferent transitions from a starting state towards a tar-

geted state. The Q matrix is set initially to zero. In

each iteration, the Q matrix is updated until conver-

gence.

Once the Q matrix is learned in the training process,

we obtain the optimal route to achieve one of the good

poses (GP). The idea is to follow the links, step-by-

step, with the highest values at each state given by the

Q matrix. In our case, the learned Q matrix is given in

Table 1.

Finally, we estimated the coordinates of the next-

best-view using Q-Learning. Thus, we determined an

optimal route, i.e., the rotation γ around the Z axis

that the gripping and rotation system should make to

reach a good pose (GP) of the object. For one transition

from state s to state s’ (s→ s’), our set of actions was

made up by one of the four different movements, asso-

ciated with the state diagram shown in Fig. 4, which

were enough to pass through all possible states. These

actions are shown in Table 2.

Table 1: Learned Q matrix.

state s’

state s DE1 D1 DE2 D2 ND GP Max

DE1 → 0 80 64 80 0 0 D1

D1 → 64 0 64 80 0 100 GP

DE2 → 64 80 0 80 0 0 D2

D2 → 64 80 64 0 0 100 GP

ND → 64 80 64 80 80 100 GP

GP → 0 0 0 0 0 0 –

Table 2: Set of actions (in Z-axis).

s → s’ γ Description

DE1 → D1 -30◦ short negative movement

D1 → GP +60◦ long positive movement

DE2 → D2 +30◦ short positive movement

D2 → GP -60◦ long negative movement

ND → GP +60◦ long positive movement

We can illustrate the proposed method with an ex-

ample. In our example, the threat object was initially

detected in pose 2. According to Fig. 3 and 4, this pose

corresponds to exceptional detection state DE1. Thus,
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the next-best-view is estimated as follows: In state s =

DE1 (see row DE1 in Table 1), there are two maximum

values: D1 and D2 with 80. We arbitrarily choose to

move to state D1 (DE1 → D1), our estimated next-

best-view. For this action –according to Table 2–, a

short negative movement around the Z axis of γ = -30◦

is required. Suppose now, that our algorithm estimates

that the new pose is number 6 that corresponds to s

= D1. In this case the maximum Q value (see row D1

in Table 1) is given by the GP column with 100. Ac-

cording to Table 2, for D1 → GP, we need to perform

a long positive movement in the Z axis at an angle of γ

= +60◦. This is our estimated next-best-view. In this

example, after two steps the manipulator has reached

a good pose using the route DE1 → D1 → GP.

Fig. 5: Geometric model of an X-ray inspection system.

3.4 Elimination of false alarms

Using the explained approach, it is probable that some

false alarms occur. In the case that more than one X-ray

image of the object being tested is acquired, the elim-

ination of false alarms is possible using multiple view

constraints [16], as a threat object that is detected in

one image should be viewed from other images as well.

Thus, a detection that does not find any correspondence

in another view will be considered as a false alarm and

will be filtered out. In order to establish the geometric

constraints a geometric model is used.

The X-ray image of an object corresponds to a pro-

jection in perspective, in which a 3D point of the target

object is viewed as a 2D pixel in the digital image of the

X-ray, as shown in Fig. 5. The X-ray imaging system

consists of an X-ray detector, an X-ray source and a

robotic manipulator (rotation system). The geometric

model of the X-ray imaging system allows a relationship

to be obtained between a 3D point and its projection

in an image as a 2D point. A detailed analysis of the

coordinates of an X-ray inspection system can be found

in [14]. The geometric model that projects a 3D point

(X,Y, Z) into a 2D pixel (u, v) is given in homogeneous

coordinates by:

λ

[
u
v
1

]
= Pi

XYZ
1

 . (4)

where, λ is a scale factor and Pi is the projection matrix

of view i. This consists of a 3 × 4 element matrix that

depends on scale factors, and rotation and translation

variables of position i. These can be estimated using a

calibration approach [13].

Using the geometric model, we are able to establish

constraints in multiple views. Thus, detections across

the multiple views are validated if they satisfy the geo-

metric criteria as follows:

Validation in Two Views: If at least two X-ray images

are available (images i and j), in which the target

object has been detected in each one, the detection

in both views is validated if the epipolar constraint is

fulfilled (see Fig. 6) [14]:

|m>j Fijmi|√
a21 + a22

< d0. (5)

where, mi and mj are the centers of mass of the de-

tected objects in each view, Fij is the fundamental

matrix computed from projection matrices Pi and

Pj from views i and j, and a1 and a2 are the coeffi-
cients of the lj epipolar line defined by lj = Fijmj =

[a1 a2 a3]T.

Validation in Three Views: If at least three X-ray

images are available, in which the target object has

been detected in each one, detection in the three views

can be validated if the trifocal constraint is fulfilled

(see Fig. 6) [14]:

‖mk − m̂k‖ < d1. (6)

where, mk is the center of mass of the detection in

the third image and m̂k is the estimated position of

the hypothetical detection. The last one, m̂k, is es-

timated using the corresponding points mi and mj ,

and the trifocal tensors T k
ij computed from projection

matrices Pi, Pj and Pk of views i, j and k.

Those detected objects that do not satisfy the multi-

ple view constraints are considered as false alarms, and

they will be filtered out.
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Fig. 6: Epipolar and trifocal geometry to establish correspondence between points mi, mj and mk.

4 Experiments and results

In this Section, we report on the experiments we per-

formed and the results we obtained in the detection of

threat objects using the proposed active vision strat-

egy (following Fig. 2). The threat objects we used in

our experiments were handguns and razor blades (see

Fig. 7). In our approach, we had to train and adjust

the test parameters of the single-view detector (AISM

detector as explained in Section 3.1) for both threat

objects. The training consists of the characterization

of the target object, which has three steps: 1) training

image acquisition: acquisition of representative X-ray

images of the threat object; 2) codebook generation:

creation of a visual vocabulary using keypoints and lo-

cal visual descriptors; and 3) occurrence: position es-

timation of the keypoints related to each visual word

of the vocabulary. The adjustment of the test parame-

ters consists of tuning different parameters in the four

main stages of object detection: 1) feature extraction; 2)

matched codebook entries and voting space; 3) merger

of detected candidates; and 4) detection. In our exper-

iments, we used the same parameters reported in our

previous work [26] that deals with the single-view de-

tection using AISM.

The performance of our method is measured using

the quality evaluation PASCAL criteria2, where a de-

tection is considered valid if the normalized area of

overlap ao, between the bounding box of a detection

2 From ‘PASCAL Visual Object Classes Challenge’ [5].

BBdt and the bounding box of the ground truth BBgt

is greater than a threshold θ. The normalized area is

defined as follows (see Figure 8):

Fig. 7: Threat objects inside baggage: Razor blade and hand-
guns.

Fig. 8: Evaluation criteria for comparing bounding boxes.
Interpreting the area of overlap criteria. The normalized area
ao is given by the ratio of the intersection to the union areas.
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ao =
area(BBdt ∩BBgt)

area(BBdt ∪BBgt)
. (7)

where, BBdt ∩BBgt is the intersection of the detection

window and the ground truth, and BBdt ∪ BBgt their

union. In case ao > θ, the detection is considered true

positive, or otherwise false positive. In our work, we

measured the precision (Pr) recall (Re) and F1-score

defined by:

Re =
TP

Np
, P r =

TP

TP + FP
, F1 = 2 · Pr ·Re

Pr +Re
. (8)

where, TP is the number of true positives, FP is the

number of false positives and Np is the total number

of objects to be detected. A perfect detector achieves

Pr = 1 and Re = 1, i.e., all objects are detected with

no false alarm. In this case, F1 = 1.

In Fig. 9, we show a detection with an overlap area

ao = 0.37, and we clearly see that the detection consid-

ers almost 2/3 of the visible area of the handgun. Usu-

ally, the overlapping threshold θ is set to 0.5. However,

if θ is 0.5 (or even 0.4), the detection of Fig. 9 would be

unfairly considered as false positive. For this reason, in

our experiments, we evaluated the performance for θ =

0.3, 0.4 and 0.5.

Fig. 9: Handgun detection with ao = 0.37.

4.1 Detection of handguns

For the evaluation of our approach in the detection of

handguns, we performed 360 experiments as follows: we

took two bags, each one containing a handgun and other

different objects (see assorted images in Fig. 11a), we

rotated each bag 180 times around its Z-axis using a

robotic manipulator (ABB-Flexpicker) in 2◦ steps, we

acquired an X-ray image in each position yielding two

sequences of 180 X-ray images each. For each X-ray

image we ran the detection algorithm, and finally we

measured the performance of the detection according

to (8).

For the baseline method, we tested a single-view de-

tection algorithm (with no multiple-view strategy and

no geometric constraint). That means, the AISM-detection

algorithm (see Section 3.1) made a decision using only

one view. As we can see in Table 3 and Fig. 10 (see

‘Single-View’ method) the results are very poor, given

that for θ = 0.3, F1-score was only 0.2371 (with Pr =

0.33004 and Re = 0.1850).

Fig. 10: Performance for detection of handguns for ao > 0.3
(see details in Table 3).

On the other hand, the proposed method using active

vision with Q-learning was able to improve the single-

view performance significantly achieving F1 = 0.7364

for the same θ (see ‘Q-Active’ method). In this exper-

iment, we used the same single-view detector as the

baseline method; however, we also included the active

vision strategy. The single-view detector could recog-

nize only 18.5% of the threat objects (Re = 0.1850).

That meant that our algorithm had to deal with the

poor performance of the detection process in the first

view. Active vision could identify better views in order

to improve the detection probability. See the example

in Fig. 11a where the handgun was detected after three

views.

In order to determine the effectiveness of the Q-

learning approach, in the estimation of the next-best-

view (explained in Section 3.3) we replaced the Q-learn-

ing estimator with a ‘random estimator’. That meant

that the next-best-view was a new random position. If

the target object is not detected in a good pose (GP),

the ‘random estimator’ will output a rotation value ran-

domly selected from the Table 2, this is because such

movements are the most accurate to pass from one state

to another. The results are summarized in Table 3 and

Fig. 10 (see ‘R-Active’ method), where for θ = 0.3, F1-

score was only 0.4616.

In these experiments, the algorithm of false alarms

elimination (explained in Section 3.4) failed. This algo-

rithm is based on geometric constraints that validate

the location of corresponding points in different views.

In the case of handguns, it was difficult to establish the

same representative point of the threat object across

the multiple views. Due to the particular asymmetry

of the shape of the handgun and the deficiency of the
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Table 3: Performance for Handgun Detection.

ao > 0.3 ao > 0.4 ao > 0.5

Method MV G Pr Re F1 Pr Re F1 Pr Re F1

Single View – – 0.3300 0.1850 0.2371 0.2650 0.1550 0.1956 0.0750 0.0450 0.0563

Q-Active Q – 0.8250 0.6650 0.7364 0.6050 0.4900 0.5415 0.1750 0.1400 0.1556

R-Active R – 0.5200 0.4150 0.4616 0.4300 0.2950 0.3499 0.1150 0.0950 0.1040

MV: multiple-view strategy (Q: Q-learning, R: random), G: geometric constraints.

AISM detector for placing the centroid of the bounding

box detection BBdt (which is very different from the

center of mass of the object), the epipolar and trifo-

cal constraints could not correctly establish the corre-

spondence between the views. For this reason, in the

detection of handguns, the algorithm does not consider

the step of false alarms elimination. Nevertheless, this

step could be used successfully in the detection of razor

blades.

4.2 Detection of razor blades

For the evaluation of our approach in the detection of

razor blades, we followed the same methodology ex-

plained in the previous Section: 360 experiments using

two bags that contain the threat object (razor blades).

This meant that we had for these experiments two se-

quences of 180 X-ray images each, that were acquired

using a manipulator in steps of 2◦ degrees around the

Z-axis of the bags. The reader can see some examples

in Fig. 11b.

In this case, the baseline method, i.e., the single-

view detection algorithm (with no multiple-view strat-

egy and no geometric constraint), yielded a poor per-

formance as shown in Table 4 and Fig. 12 (see ‘Single-

View’ method): for θ = 0.3, F1-score was only 0.3859

(with Pr = 0.4750 and Re = 0.3250).

The proposed method using active vision with Q-

learning was able to improve the performance to F1 =

0.5422 (see ‘Q-Active’), in cases where we did not use

the false alarms elimination module. However, when the

module of false alarms elimination was used (see ‘Q-

ActiveG’) F1-score increased up to 0.8981. This result

highlights the relevance of the use of geometric con-

straints in active vision. An example of this detection

is illustrated in Fig. 11b, where the reader can see the

epipolar line in the second image (see the image of Pose

6) and the estimated centroid detection in the third

view using trifocal geometry (see the small yellow cir-

cle in the image of Pose 14). It is worth mentioning

that the module of false alarms elimination did not only

reduce the number of false alarms (precision value in-

creased from 0.555 to 1.000, meaning that no false false

alarm was detected), but also increased the number of

true positives (in which the recall value increased from

0.5300 to 0.8150). The reason for this interesting re-

sult is because after two X-ray images, the geometric

constraints increased the probability to track the cor-

rect threat object. Without geometric constraints, the

choice of which potential threat object is to be tracked

may fail and for this reason the final detection might be

wrong. However, with geometric constraints the track-

ing is validated in the first two views and the probability

to track a real threat object is increased.

In Fig. 11b we show a sequence that highlights the

effectiveness of the proposed approach. Here we see how

from a bad pose it is possible to reach a good pose (GP),

starting from a first, second and even a third acquisi-

tion of X-ray images. The movements of the robotic

manipulator, estimated for the Q-learning algorithm,

seem to be mostly adequate, and most complications

arise from the internal disorder in the inspected bags,

which has a negative influence on the performance of

the AISM detector, causing false alarms that are dif-

ficult to eliminate, and consequently a diminishing of

the global performance of the improved approach.

Finally, in order to determine the effectiveness of the

Q-learning approach with geometric constraints, in the

estimation of next-best-view (explained in Section 3.3)

we replaced the Q-learning estimator by a ‘random esti-

mator’ as explained in the previous Section. The results

are summarized in Table 4 and Fig. 12 (see ‘R-Active’

method), where for θ = 0.3, F1-score decreases from

0.8981 to 0.7532.

4.3 Implementation Details

In the implementation of our method, we used open

source libraries such as VLFeat [31] for k-means and

SIFT descriptor to implement the AISM detector. The

computing time depends on the size and speed of im-

age acquisition, the number of useful descriptors in the

image, the spatial distribution, number of occurrences,

and rotation speed of the robotic manipulator, among
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(a) (b)

Fig. 11: Inspection sequences of threat objects, using our active vision approach: (a) handgun detection from pose 1 (bad
pose) to pose 13 (good pose), and (b) razor blade detection from pose 1 (bad pose) to pose 14 (good pose).

Fig. 12: Performance for detection of razor blades for ao >
0.3 (see details in Table 4).

other factors. However, as a reference, the testing re-

sults for the detection in a good pose of razor blades

were obtained on average after no more than 70 sec-

onds, and for handgun detection, after no more than 80

seconds, with respect to each inspection carried out. All

the experiments were performed on a Mac Mini Server

OS X 10.10.1, processor 2.6 GHz Intel Core i7 with 4

cores and a memory of 16GB RAM 1600 MHz DDR3.

The algorithms were implemented in MATLAB 2015a.

The code of the MATLAB implementation and all im-

ages used in our experiments are available on our web-

page3.

3 See http://dmery.ing.puc.cl/index.php/material/.

The X-ray images of our experiments were acquired

using a digital X-ray detector (Canon, model CXDI-

50G), an X-ray emitter tube (Poskom, model PXM-

20BT) and a lead security cabinet to isolate the in-

spection environment. The size of the X-ray images was

2208× 2688 pixels. Additionally, for the grip of the bags

and rotating movements a robotic manipulator (ABB,

model Flexpicker) was used.

5 Conclusions

Active vision is not a new concept in computer vision,

as it has been used in robotics and throughout indus-

try. Nevertheless, it can be considered a recent strategy

in terms of X-ray testing. With this work we have ex-

panded the original approach that we presented in [25],

providing a robust method against the internal clutter

of the test object and partial occlusion, through the

use of: i) the AISM detector, ii) the development and

incorporation of the estimator of the movement coordi-

nates algorithm to search for a good view, and iii) the

elimination of false alarms using geometric constraints.

This improved approach was developed for the detec-

tion of handguns and razor blades placed in bags, and

with high degrees of complexity (internal clutter, large

quantity of objects and high occlusion levels), meaning

more realistic scenarios than those considered in our

original approach.

http://dmery.ing.puc.cl/index.php/material/
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Table 4: Performance for Razor Blade detection.

ao > 0.3 ao > 0.4 ao > 0.5

Method MV G Pr Re F1 Pr Re F1 Pr Re F1

Single View – – 0.4750 0.3250 0.3859 0.4650 0.3200 0.3791 0.4350 0.3000 0.3551

Q-Active Q – 0.5550 0.5300 0.5422 0.5550 0.5300 0.5422 0.5200 0.4950 0.5072

Q-ActiveG Q X 1.0000 0.8150 0.8981 1.0000 0.8150 0.8981 0.9500 0.7700 0.8506

R-ActiveG R X 0.9150 0.6400 0.7532 0.9150 0.6400 0.7532 0.8500 0.6100 0.7103

Active inspection allowed us to detect threat objects

that are found in intricate or non-representative poses.

Our conclusions are threefold:

Multiple views represents a good choice in baggage

screening: We can validate the well-known conclu-

sion that strategies based on multiple views achieve

higher performance than those based on single views.

In our experiments, with handguns and razor blades,

the F1-score in single-view experiments was 0.24 and

0.39, respectively. On the other hand, with multiple

views, the F1-score was increased by approximately

0.5 in each case. The reason why multiple views are

better in baggage screening is because many target

objects cannot be recognized by just some (single)

views. Such is the case of handguns and razor blades.

Q-learning is efficient and effective in X-ray active vi-

sion: the Q-learning algorithm allowed us to estimate

the movement coordinates of the next-best-view. This

was tested in complex environments of radioscopic

inspection, in which there were many levels of uncer-

tainty. The uncertainties that we incorporated into

the Q-learning were produced by: a) the imperfections

of the object detector when detecting and estimating

good poses, b) movement restriction of the robotic

manipulator, that made it impossible to reach some

good poses, and c) the replicas of the quadrants in the

X-ray images database for training, that confused the

pose estimator. Thus, the estimator of movement co-

ordinates based on Q-learning is capable of finding an

optimal policy of movement that minimizes the quan-

tity of images necessary to locate the target object in

a good pose. If we compare a random strategy with

a Q-learning strategy, the increment in the perfor-

mance was significant: F1-score was from 0.46 to 0.74

for handguns and from 0.75 to 0.90 for razor blades.
False alarms in baggage screening can be eliminated

using geometric constraints: Geometric multiple view

constraints were tested in the detection of razor blades.

This is an easy way to improve the performance in

multiple views by filtering out those detections that

do not find any correspondence in other views. In the

active inspection of razor blades, the improvement

was from F1 = 0.54 to F1 = 0.90.

Our preliminary experiments have shown that the

proposed approach based on active vision achieves promis-

ing results. We believe that our method can be em-

ployed to aid a user during the task of inspection.
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